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Abstract. Several effilcient methods are given for updating the Cholesky factors of a 

symmetric positive definite matrix when it is modified by a rank-two correction which 

maintains symmetry and positive definiteness. These ideas are applied to variable 

metric (quasi-Newton) methods to produce numerically stable algorithms. 

1. Introduction. This paper is concerned with variable metric (VM) methods, 
(sometimes called quasi-Newton methods), for finding a local minimum of a nonlinear 
function, f(x), of a vector x = (xl, ... , xn)' of n variables, where the prime ""' de- 
notes transposition. The kth iteration of a VM method, is usually expressed as 

(1.1) x(k+1) - X(k) - tkH(k)g(k), H(k+1) = H(k) + E(k) 

where g(k) = the gradient, V f(x), evaluated at x (k) and tk is a scalar, usually deter- 
mined so that either f(x (k+ 1)) = mint f(x (k) _ tH(k)g(k)) or f(X (k+ 1)) < f(x (k)). 

H(k) is a symmetric n x n matrix approximation to the inverse of the Hessian matrix, 
G = {a2f/ax axj}, of f(x) at x = x(k), and E(k) is a matrix, typically of rank two, 
which is formed from H(k) and the vectors 

(1.2) (k) = g(k+) g(k) 

and 

(1.3) s(k)-x(k+l) 

subject to the condition that H(k+l )y(k)-ps(k). (p iS almost always required to be 1.) 
The correctionsEE(k) used in the most widely known and used VM methods (e.g., 

the Davidon-Fletcher-Powell (DFP), [7], [12], the complementary DFP (comp-DFP), [6], 
[10], [18], [25], and the rank-one [5], [8], [23], [26] methods), all belong to the 
one-parameter family of correction formulas 

H+~H+sS Hyy'?H 
(1.4) H+= s yHy +=H r', 

where r = Hy/y'Hy - s/s'y [5], [18], [25]. To simplify notation, we have suppressed 
the superscript (k) and replaced (k + 1) by a "plus". If a line search is performed at 
each step, these methods can all be shown to be superlinearly convergent for f(x) strictly 
convex by combining Powell's elegant proof of this for the DFP method [24], with 
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Dixon's results for this one-parameter family of methods (9]. 
If in both the DFP ((3 = 0) and conr '-P (3 = y'Hy) methods the step length 

parameter t is chosen so that y's > 0, an Z -act arithmetic is used, then H+ will be 
positive definite if H is. This guarantees that at each step the direction 

(1.5) p -Hg 

is downhill as long as the initial H is chosen positive definite. Unfortunately, if one is 
computing on a finite precision machine, then H can become indefinite or even singular 
because of rounding errors, leading to failure of the algorithm or premature termination. 
Even if the algorithm is designed to handle such eventualities, the nonpositive definite- 
ness of H will only be discovered when g'Hg < 0. 

Strategies to deal with- these difficulties that have been suggested include period- 
ically resetting H to the identity I, [1], [22] and rescaling variables [1] . In this paper 
the strategy we propose is to use a factorized positive definite approximation, B = 
L1DL' to the Hessian matrix G rather than an approximation H to G1 . L1 and D 
are, respectively, unit lower triangular and diagonal matrices. Formula (1) is then re- 
placed by formulas for updating L1 and D. 

Gill and Murray [16] first suggested this approach. They give two methods for 
updating the Cholesky factors L1 and D when a symmetric rank-one matrix is added to 
L DL'- Since the correction terms in (1) can be written as the sum of two symmetric 
rank-one terms, their procedures need be perfomed twice when applied to VM methods. 
Gill, Golub, Murray and Saunders [15] give further results along these lines for the 
factorization LL'. Modifying LL' by analogs of the methods given below are described 
in [20]. Other methods for modifying the Cholesky factors of a positive definite 
matrix, when a matrix of rank one is added to it, have also been given by Bennett [2], 
Gentleman [14], and Fletcher and Powell [13]. 

In this paper recurrence formulas are derived for effecting the rank-two modifica- 
tion of L 1DL'l by expressing it in product form. Three methods based upon this idea 
were first described by the author in [19] and [20]. In the next section, two efficient 
methods for orthogonally triangularizing I + zw' are described. In Section 3, these 
methods are applied to VM updating formulas, expressed in product form to give 
methods for updating the Cholesky factors of a VM matrix. The recurrences of Sec- 
tion 2, although applied here to a particular problem, are general in nature and may be 
useful in other contexts. A rank-two analog of Gill and Murray's Method B [16], which 
is a natural outgrowth of the results of Sections 2 and 3 is presented in Section 4, 
while Section 5 outlines a way of coping with negative diagonal elements in this method, 
should they arise. Finally, Section 6 offers some comments and observations on the 
methods presented. 

2. Orthogonal Triangularization of I + zw'. Let us consider the problem of 
fimding an orthogonal matrix Q that will reduce I + zw' to a lower triangular matrix L, 
i.e. (I + zw')Q = L. Henceforth, the symbols L, L1, D, and Q will always denote lower 
triangular, unit lower triangular, diagonal and orthogonal matrices, respectively. 

When z = w, Methods 1 and 2 given below reduce to Methods C5 and C2 (called 
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Method A in [16]) of Gill et al. [15], respectively. The derivations that follow parallel 
those given in [16] and [15] for the symmetric case. Gill and Murray [16] also give a 

method for determining Q so that (L + zw')Q is lower triangular. When L = I their 
method becomes analytically equivalent to Method 1. However, it does not take ad- 
vantage, as does Method 1, of the special nature of the matrices involved. 

Method 1: Using Givens'Plane Rotations. In this method Q will be formed as a 
product of two sequences of Givens' plane rotations Qn -1' , Q1 and Q1 .. 

Qn- 1 The first sequence of rotations are chosen so that the last n - 1 elements of w 
are successively transformed to zeros. Specially, if we define 

(2.1) Qi 
c1 Si j + I -5. C. + 

I I 

L~~~~~~ 

w - w and w (n-j+) - Q.i(n-i, / = n-1, . . ., 1, 

where 

Cj= Wji)/r1, Si= w(ni)r 

and 
rj =Z(nj)2 - }n-j)2 

j+1 j1 

then 

(2.2) w(n-i+1) = (w1, . . ., w1_1, wi, 0, . .. , 0)'. 

Except for the first element wl, all elements of w^(n) are zero. Moreover, as pointed 
out by Gill et al. [15], the matrices 

Q()= QjQj+l1.. Qn - 1 1. . ,n-1 

are special upper Hessenberg matrices of the form 

1 

1~ 
oiqi 0jqj+ l 1jq n_ 1 jiqn 1 

(2.3) Q() = -si j+ 1 qf+ 1 j+ 1 qn-1 fj+ 1 qn 

On qn-i an- 

Sn- 1 pnqn 
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Since w(n-j+ 1) = Q(i)w and Q(i)'Q(i) = I, 

w = Q-i W(n j+ ) = (w1, . . . , w1 j3.wq., .. . , 

where the last equality follows from (2.2) and (2.3). Therefore, #j3w. = c and qk = 

wk/c, k = j, ... , n, for some arbitrary nonzero constant c. If wn * 0, and we choose 

c = 1, then the following recurrence with di = 1, for all j, can be used to determine 

Q(1). A simple proof of this is given in [20]. 
Recurrence 1. 1. Set j = i/wn. 

2. Forjn -1,. .. 1, set 

r; pi+ 1 w s, = (r3 + d -1dj+ 1 ) c rsj r, 
= 
fi w,= s1 =+ 

(r + c1 = rc S,- 

The quantities d1 that appear in the recurrences given in this section have been included 

so that these recurrences can be used to generate the 0,, y,, and A that appear in form- 

ulas (3.7) and (3.13) of Section 3 for updating the Cholesky factors of a VM matrix. 
For the purposes of this section these d, should all be considered to have the value 1. 

If wi = 0 for k + 1 < i S n and wk 4 0, then all recurrences given in this sec- 

tion apply with n replaced by k, and for the purposes of the next section f,3 = 'Yj = 0 

and X1i = 1 for k + 1 < i < n. In a computer code any wi such that Iw11 < ellwlil, 

should be treated as zero, where e is the machine precision. Also, one should then not 

have problems of overflow since it can be shown that 

d~w 
2 dn w. 

i d,+ 1 W2 

It should be clear from the above discussion that 

H = (I + zw')Q 1)' - Q(0)' + r zet 

where wYj = 1/B1, e'= (1, 0, . . . , 0), and H is the lower Hessenberg matrix 

Wl + 'Y1z1 -Si 

0 W2 + Y1Z2 2 

* . 
*~~~-n- 

131wn-1 + Ylzn - 12 n1*** -1n1-sn- 

01 Wn + 'lzn 02wn *-ln-iwn gnwn 

By properly choosing a sequence of rotations Q1, . . . 5 On-1 to successively reduce the 

superdiagonal elements of H to zero, we can transform ft into the lower triangular 
matrix 
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0311'2 +?y1Z2 X2 

(2.4) L(w, y, z, X) - |31W3 + 'Y1Z3 32W3 +2Z3 

Lol Wn + YzlZn 32Wn + 72Zn n-IWn + 'y-z,Zn Xn 
J 

where the X1, i,3 and yj can be computed from 
Recurrence 2. 1. SetYl= I/(dp3l), 1- =3w + 
2. Forj= 1 , . . . , n-l set 

d. 
x2 +25 ' - sI X 

7 d+1 1 1+i/Xi 

dj+ i il d, ]i + i+ 

=i 131+1w1+1 

j++ = ailj+ 1 + 'Yj+ lZj+ . 

3. SetXA =t ,n 

Qi is given by (2.1) with c; and s5 replaced by 
Ci 

and s; as defined in the above recur- 
rence. 

This recurrence with d, = 1 for all j follows directly from the identity 

[iIwi+ + + i+ 1& : + 1 li- x j 

C- 
Xi 

+ -S 
i iS 

-e7(Ci - Aj:j+ 1) Wj+ 1 + Cz Zj+1 (Sj of + Cj 1 )Wj+ 1 + ?jzj+ 1 

and the requirement that = X1/s1. 

Consequently, if Q= ,... ,Q, , then (I + zw')Q()'Q -HQl==L. 

Method 2: Using Householder Transformations. In this method I + zw' is re- 
duced to lower triangular form by a sequence of n - 1 Householder transformations, 
P - . . ., Pn_ -i The jth step of this method is based upon the use of a Householder 

matrix P to transform the first row of a matrix of the form I + (vz - nw)w' to a 
multiple of el. In particular, Pi has the form 

[I }OZ+j. 
If we ptn-j+i 

If we partition w and z as 



FACTORIZED VARIABLE METRIC METHODS 801 

w' = [wl wV] and z= [Z1, z] 

and choose P = I - auu', where 

a= vzl - 7wl, u = p|a-'], A+ (02 + a 2-t-)/2 

(2.5) 
0= I+awl, 11=0-X and a=- l/X, 

then (I + (z-z - qw)w')P can be written as 

I -1 -I2 0 ' aw I I.-7 up7 -aa,w' 

O-u(04u + a2ww), [1 - a(Oii + a2wiw)I aw] 

IZz+B I + (lJz- -7-W )W 
- 

where 

= [w 1 - au(1w 1 + aw-'w)] ', =-{[w -ap(wl + aww)]7 + apa}, 

(2.6) 
ii= [1 -a(iw1 +?a-w'w)] and 2?= [1-ua(iiw1 ?aiVw)fl1?ua2. 

After some algebraic manipulation it can be shown that the top row of the last 
partitioned matrix equals [X: 01, 

,y = (wl 0 + aw-'w )P/ X, (W = 1w 0 + aw-'w- )rq / + al X, 

ii=-P/X and =-(1+ a2/p)/ X. 

Since the submatrix I + ( ii-- ??w )w' has the same form as the original, the entire or- 
thogonal triangularization of I + zw' may be specified recursively starting with z- = 1 and 

,q = 0. The resulting lower triangular matrix is given by 

(I + zw )P1 Pn_l L (0, w, y z, X), 

where L is defined by (2.4) and the scalars ,j3, 'y, and X, are computed from 
Recurrence 3. 1. Set Po = 1, 7 = 0. 
2. Forj= 1,...,n-1 set 

a,j- = r_z, 
- rlj- 1w,, oj = I + ajwldj, 

a2 n w2 \? 

dik kj+l d )ki pi i i I 

2 

n w2 
b = 01w1 ? , d- 

k=j+ 1 k 

= b1z.i/Xid1, ,3j/ Xj = (a, - bjrj_l)/XJd1, 

i = - pr-/X,., ( 1 + 

3. Set a- = z- , z- -v1_ w-,X = 1 +a-w-/d- 
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with d, = 1 for all j. Cancellation in the computation of iii is avoided if the sign of X 
is chosen to be opposite to that of 6,. 

If we define s. = n 
=j+ 1 w2 /dk j n I and s = O, then 

Si-,1 = si - wj1d.,j n, n-1,... 2. 

The s;, j = n-1, .- . , 1, should be computed and stored prior to using Recurrence 3. 
If they are not stored, they can be regenerated in the reverse order in the recurrence 
itself, as long as some precaution is taken to prevent any s; from becoming negative 
because of rounding errors. 

Computing the i3j, 'y,, and A7 either by Method 1 (Recurrences 1 and 2) or by 
Method 2 (Recurrence 3) requires just 0(n) operations. In addition 2(n - 1) and 
n - 1 square roots are required, respectively, by these methods. 

3. Updating the Cholesky Factors of a VM matrix. By replacing H by B, B by 
H, y by s, s by y, and , by ,Bin formula (1.4), we obtain a one-parameter family of up- 
dating formulas for B that are "dual" or "complementary", in the sense of Fletcher 
[10], to the family (1.4) for H: 

yy' B ss'B - 
(3.1) B + = B + ? O- B +rr, 

y s 

where 

r = Bs/s'Bs - y/y's. 

Following Brodlie et al. [3], we can write the above in product form as 

(3.2) B+ = (I + vu')B(I + uv'), 

where 

(3;3) u = s + otHy, 

(3.4) v = OlBs + 02y, 

0 r(a2d + ab)a + I 
0 a + aa(c + ab) - a 

_= o2d + 2agb + c J 2 ?2d + 2ob + c 

and 

a = [(a + 1)2b2 + (c - b) (b - a2d)]-V2 

b = y's, c = s'Bs, d = y'Hy and H = B- 1. As in [3], it can be shown that the param- 
eters a and , are related by the equation 

bc[a2(b + d) + 2ab] 

(a + 1)2b2 + (c - b) (b - a2d) 

and that the conditions (a + 1)2b2 + (c - b)(b - C,2d) > 0, a # bld, and y's > 0 
guarantee that B+ will be positive definite if B is, assuming exact arithmetic. 

Setting a = 0 or - 2b/(b + d) yields the product form of the DFP updating 
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formula for B. As is well known, this corresponds to updating H = B- 1 by the 
comp-DFP formula. If u and v in (3.3) and (3.4) are multiplied by an appropriate 
scalar p and Ilp, respectively, they can be expressed in this case, simply as 

u=p=-Hg and v= - - 
((y's) (p'g)) /2 p g 

Similarly, if a = + ?/Ibd, we obtain the comp-DFP updating formula for B and can 
write u and v as 

Hy s 
u= 

Hy 
1-, and v=y. 

((y'Hy) (y's))'/ ys 

Let us now consider updating the factorization 

(3.5) B =L DL' 
1 1* 

If we let L = L1D?2, then from (3.2) we have that 

B+ = (I + vu')LL'(I + uv') = L(I + z2^') (I + Wiz')L', 

where Lz = v and Lwi = LL'u = Bu. 

In the previous section, it was shown how to obtain the factorization I + z^W = 

L Q', where L = L(03 i^, w , iy, X) is a special lower triangular matrix of the form (2.4). 
Since Q'Q = I, we have that 

B+ = LL Q'QL'L' = L+L+' 

where 
L+ = LL = L D?L 

is lower triangular. It should be apparent that 

D/2L (13, w, j , X) = L (1, w, j, z, X) = L((, w, 'y, z, e)D'2, 

where 
1/2 Y2 1~/ 1 

w=D WI z=D2Z, X=D2X, e =(1,...,1)', 

D =diag(X1, ... , Xn), f=D f and z = D Ty. 

Clearly then, B+ - L + D+L +', where 
(3.6)= L+ L1L(3, w , z, e), 

(3.7) D+ = D = diag(d1 12 ... ) dn, n 

(3.8) L1w =Bu 
and 

(3.9) Liz = v. 

If we define w and z by 

(3.10) L1 w 
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and 

(3.11) LiZ =y, 

then by (1.1)-(1.3), (1.5), (3.7) and (3.8) 

w = tw? + az and z = 0iw + 02Z2 

We also note that we can simultaneously compute the solution w of (3.10) and the 
vectors W (2), . i(') needed in (3.13) below, from 

(3.12) W ?+ 1 + = w () 

starting with w1) - g, where i(X) denotes the jth column of L1. The solution z of 
(3.11) and the vectors z can also be computed in this way starting with z(1) 

= y. Finally, we obtain that (3.6) is equivalent to the following updating formulas for 
the columns of L1: 

I(X)+ = I(X) + t(N + ?1 X-) (+l) 

(3.13) 

+ ? 02 z) j= n -1,..., - 1, 

where 3, Ij 'Y, Ix, j = 1, . . ., n - 1, and Xn can be computed recursively in terms of 

wj, zj and d,, j = 1, ... ,n, by Methods 1 or 2 of Section 2. 
and y, determined by these recurrences and j , , and defined above satis- 

fy the relations 

(3.14) 

The scalars 01 and 02 can be computed with 0(n) operations and one square root since 
the quantities b, c and d, which appear in their definition can be expressed as b = 

ty'p = t "z'D- 1 w, c = - t2p'g = tw'D- l w and d = 'z'D- 1? . Consequently, one full 
step of a VM algorithm which updates the factorization (3.5) using (3.7), (3.13) and 
either Recurrences 1 and 2 or Recurrence 3 can be done with just 5/2n2 + 0(n) 
multiplications and divisions. This includes the costs of computing the search direction 
p from L' p = D- 1 w and all square roots, since each of the latter require 0(1) oper- 
ations. 

From (3.6), (3.14) and analogs of (3.12) corresponding to the forward elimina- 
tions (3.8) and (3.9) we have that 

l(i)+ = IiJ) +?i W(i+l) + ?i z U+1) 

(3.15) Xi Xi 

'Y('Y ni- - 1. 
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As it is possible to show, either from Recurrences 1 and 2 or from Recurrence 3, that 
the term in brackets in (3.15) is equal to I/ 

(3.16) ( - (l/3)l(j) + w (i) + z() j = 1 1. 

Fletcher and Powell analyze the growth of rounding errors for formulas analogous 
to (3.13) and (3.16) that arise when the Cholesky factors of B are updated to account 
for the addition of a symmetric rank-one matrix and show that factors of 1 and 1/ X1i, 
respectively, appear in their error bounds [13] . Since use of (3.16) for j = 1, . 

n - 1 entails an additional 1/2n2 operations, Fletcher and Powell follow Gentleman's 
idea [14] of only using (3.16) when the term involving X, (i.e., d/d1) in the error 
bound for (3.13) becomes dominant. In their case this occurs for X1 > 2. It is suggest- 
ed that a similar strategy be used with the methods given here. 

Fletcher and Powell [13] also report that on the basis of a large number of 
applications of their "composite-t" method that X, > 2 on fewer than l/n occasions 
on the average. In our methods, the use of (3.16) should be required even less 
frequently, since the values of X. that are computed in our method cannot be greater 
than those computed by the composite-t method. Consequently, the operation counts 
(based solely on (3.13)), already given still hold on the average. 

It is evident from (3.7) that d:- > 0, j = 1, . . . , n. From Recurrences 1 and 
2 one can show that in Method 1 

d. di 2 > SL >0, j= 1,...,n-1. 
di+l 1 di + dn(wi ln) 

If Method 2 is used, then from Recurrence 3 and the assumption that wn # 0, 

i (i'd, k=j+ dk k 

since if O0 = 0 then a, # 0. 
Because of rounding errors there is the possibility (with essentially zero proba- 

bility), that Xn = 0. Therefore, one can state, with probability equal to one, that 
Methods 1 and 2 preserve the positive definiteness of B. 

4. An Alternate Method. The VM updating formula (3.1) can always be written 
in the form 

B+ = B + auu' + TVv', 

where 

(u - u)'s - (u's) (u's) uT u 
Tt=3,B + u s, a = T(U'S)2 u's T us 

and either (i) u =Bs and -u =y, or (ii) u = -y and u= - Bs. If,B= s'Bs or ,B= 
- y's, then u- and u must be defined by (i) and (ii), respectively. These two special 
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cases correspond to the variationally derived updates considered by Goldfarb [18]. 

= (u's) (u's)/(u - u)'s, i.e., a = 0, gives the rank-one updating formula. 
Hence, given the Cholesky factorization (3.5) for B, we can write 

(4.1) B+ = L1(D + aww + Tzz )L1, 

where 

Liw= u and LiZ=v. 

If ,Bis chosen so that B+ is positive definite, i.e. > cb2I(b2 - dc), then 

(4.2) D + aww + Tzz = L DL' 

must also be positive definite and have a Cholesky factorization L DL'. From the 
previous section we know that L1 = L(j, w, y, z, e) is of the special type (2.4). This 

could also be proved by induction; (see [15] for the case z = w). Therefore, the 

equations that are usually used for obtaining the factorization (4.2) become 

dk(k;+eZ) + d; = d. + ow,3 + Tz3 and 
k= 1 

j-l 

k dk(kWj +w ?kZ) (kw( 1) + 'YkZ(i+ )) + dj(jw(+ 1) + 'Y1Z(j+ l) j1 1,. 
k=1 ? 

a iWjU(+ ) + TZiz(j+l1)) 

where wj and Zj are the jth elements of w and z and w(i+ 1) and Z( + 1) are vectors of 

the last n - j elements of w and z. When j = 1, i- a is defined to be zero. 

Equating coefficients of w(j+ 1) and Z(+ 1) yields 

j - UWj - E dk(W kjk j =,...,n - 1 
di k=1 

and 

TZ : k(kWi? 
+ 

YkZjiPk1 j= ,. n -1 'i i 
[ 

k=1 
(kj zZ)k ,... 

If we define 

qj = y1dj, oj = d; 

j-1 

aj= 0 I E %k , n - 
k=1 

j-1 
T7 T E nkyk 

k=z1 

and 
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j-l 

k= 1 

then recurrence relations for f31, YP d1 and these quantities are given by 
Method 3: Using Cholesky Factorization. 
Recurrence 4. 

1. 1l = ?c Vw = ? 1 = , 

2. agj =aj wj + Uj zj, rj = r, zi + pij wi 

d0+ du + awf3, + jzj Tj= . n- 

111+1 1V.Y 

cI = o /dj , ?j = /dj 

9j + 1 = j - cljp oi j + = j - j'Yj J 

pj + 1=pj - ogj 'j, 

3- atn -(nwn + 11nZn, 'n = Tn Zn + PiWn, 

dn =dn + an Wn + 7ln Zn 

From (4.1) and (4.2) we have that 

L+ =L1 +L1L(,w,wy,yz,O) and D+=D. 

Since we can derive an analog of (3.13), the operation count given in the last section 
applies to this method as well. However, no square roots are required. 

When z = w this method becomes equivalent to Method B of Gill and Murray [16] 
(called Method Cl in [15]). 

5. Special Iterations. The recurrence of Section 4, although simpler than those of 
Section 3, can result in the elements of D becoming zero or negative because of rounding 
errors. Therefore, it should not be used without some strategy to ensure the positivity 
of the dj. If dj becomes < 0, one might use the strategy proposed by Fletcher [ 11 ], 
that d1 be replaced by the smallest dj > 0 in any previous matrix. A more conserva- 
tive strategy would be to replace dj whenever it dropped below some specified e > 0, 
by the smallest dj > e in any previous matrix D. This could be used with the methods 
of Section 3 as well as with the one of Section 4. Bounding the spectral condition 
number of D has been suggested by Gill, Murray and Pitfield [17]. 

Strategies of this kind are quite different from those that periodically reset H, and 

consequently B, to the identity matrix. These latter approaches can effect drastic changes 
in B, since all of the information incorporated in H (and B) is discarded. 

In Recurrence 4 if some di, say dj, becomes nonpositive, the special iteration given 
below can be used to modify the factors L1 and D so that L1D L' is positive definite 

and, if desired, obtain a new approximation to the optimal solution. To simplify 
matters we will illustrate this special iteration only for the DFP updating formula for 

B (,B= Gin (3.1)). 
Special Iteration. Solve 
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(5.1) Llp =e 

for p, and let s = tp, =x + s and y =- g. The sign and value of t are chosen so 
that s'g < 0 and y 's > 0 if p'g # 0 and y's > 0 if p'g = 0. 

Update L1 and D according to the factorized version of the DFP formula for B, 
and set x+ = x. 

Optional: if f(x) < f(x), set x x. 
When (3= 0, the matrix (4.2) becomes 

(5.2) D + ? ww' - d.eej, 

where L w = y and a = 1/i's> 0. 
If d > 0, i / j, u'( D - d1e1e;)u > 0. It is equal to zero if, and only if, u = 

cxee. But in that case 

2 
u'(aww')u = of2a(w'e1)2 =-( y 's) > 0, 

t2 

since y 's = y'(L')- 'L's = tw'e1 > 0. Therefore, the matrices (5.2) and B+ are positive 
definite, and have Cholesky factorizations, even though B may not be positive definite 
(i.e. d, -< O). 

There are several ways in which this special iteration can be used. One way is to 
apply it directly to the modified factors of B upon first encountering a nonpositive di 
in Recurrence 4. At this point the first j - 1 column of L1 and j columns of D have 
already been updated using Recurrence 4 in conjunction with an analog of (3.13) or 

(3.16). It is interesting to note that when 3= 0 in (3.1), the special iteration only 

affects the first j columns of L1 and D. 
An alternate approach is to compute the di, (3id and yi, i = 1, . . . , n, from Re- 

currence 4 prior to updating L1 and D. If a nonpositive d1 is obtained, a special iter- 
ation is performed, computing p from (5.1) with L1 replaced by L1L, where L = 

L (0, w, y, z, e) is a special matrix of the form (2.4),, i = yi = 0 j, j + 1, . .., n 

and (3i and yi 5 i = 1, . . ., -1, are those quantities already computed by Recurrence 4. 

One first updates L1 and D to give L1 and D so that B = L DL'l = L DL'l + 
L1L (uww' - d1e1e;)LL' where LiLw = y, a = I/y's > 0 and d. < 0. One then adds 

the original correction to B and updates L1 and D. This corresponds to adding to B = 

L1DL' the positive definite rank-two correction term corresponding to the special iter- 
ation applied to L 1LDL'L' before adding the original correction term. Consequently, 
the numerical difficulties caused by the closeness of the matrix B + (original correction) 
to singularity should be avoided. 

This approach can be carried out efficiently if use is made of the fact the Lx = y 
and L 'x = y can both be solved for x in 0(n) operations when L is special. However, 
an additional 1/2n2 + 0(n) operations are required since computing z and updating L 
can no longer be done simultaneously. 

6. Comments and Observations. (1) All methods presented can be implemented 
using only 1/2n2 + 0(n) storage locations since the computation of the vectors w(i) 
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and z('), j = 2, . . ., n, and the updating of L1 can be incorporated into Recurrences 2, 

3 and 4. 
The solution w of (3.10) is required to determine the step direction p before the 

recurrences are applied. Computing it using (3.12) or the usual version of forward 

elimination would increase the operation count by 1/2n2. The following observation 
shows that it can be computed in only 0(n) operations except for the first step. If 

the initial L1 is set to I computing w on the first step is trivial. 
Let w+ be the solution ofLw = - += - g - y. From (3.10), (3.1 1) and (3.6), 

L 1 Lw'+ = L 1 w - L 1 z. Therefore, 

Lw = w -z. 

Because of the "special" form of L, this can be solved for Zw+ in 0(n) operations. 
(2) For all members of the one-parameter family of updating formulas (3.2)- 

(3.4), except for case of ae = 0, the operations count of 5/2n2 + 0(n) aside from 

square roots, given for Methods 1 and 2 is valid only if one is willing to approximately 

double the storage requirements to n2 + 0(n). If storage is limited to 1/2n2 + 0(n), 

then this count becomes 3n2 + 0(n) since the solution z of L 1z = y must be compu- 

ted before either Recurrence 1 or 3 is applied. 
If the DFP updating formula for B (i.e. ae = 0) is used, wi, 01 and 02 do not 

depend upon z, and Methods 1 and 2 in this special case can be implemented using only 
1/2n2 + 0(n) storage locations, 5/2n2 + 0(n) operations per VM step and, respectivell 
2n - 1 and n square roots. 

Implementation of the traditional formulas (1.4) requires 1/2n2 + 0(n) locations 
of storage and 3n2 + 0(n) operations per VM step for all cases except the rank-one 
formula. 

(3) The alternate method given in Section 4 can be implemented for all updating 
formulas (3.1) that in theory preserve positive definiteness, using only 1/2n2 + 0(n) 
storage locations and 5/2n2 + 0(n) operations. Unfortunately, one cannot guarantee 
for this method that the VM matrix B will not become indefinite on account of round- 

ing errors as one can for the methods of Section 3. 
(4) Gill and Murray were the first to develop algorithms specifically for updating 

the Cholesky factors of a VM matrix. As presented in their paper [16], their algorithm 

require 4n2 + 0(n) operations for a full VM step. If forward substitutions are carried 

out as in (3.12) and use is made of the fact that Lx = y can be solved for x in 0(n) 
operations when L is "special", then this count can be reduced to 5/2n2 + 0(n) oper- 

ations. 
Comments (2) and (3) above apply respectively to Methods A and B of Gill and 

Murray [16] with two exceptions. (These methods are the rank-one counterparts of 

Methods 2 and 3.) Method A (two passes per step) requires twice as many square root' 

as does Method 2 and the updating formula requiring the least combined amount of 

storage and operations per VM step for Method A is the rank-one formula, rather than 

the DFP updating formula for B as it is for Method 2. A similar statement holds for 

Method C5 in [15]. But the rank-one formula does not in general preserve positive 
definiteness as does the DFP formula. Using 1/2n2 ? 0(n) storage locations, Method 
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A requires approximately 1/2n2 more operations and n square roots per VM step for 
the DFP update than does Method 2. This is worth noting since past computational 
experience indicates that this updating formula outperforms all other members of the 
one-parameter family of formulas (3.1). 

(5) The "composite-t" method of Fletcher and Powell [13] is very closely rela- 
ted to Gill and Murray's Method B. It too requires no square roots and can be imple- 

mented using only 1/2n2 + 0(n) storage locations and 5/2n2 + 0(n) operations for all 
updating formulas (3.1). It is also guaranteed (by a computationally satisfactory, al- 
though somewhat artificial device) to keep the matrix B positive definite. 

(6) In their paper [16], Gill and Murray recommend that in quasi-Newton meth- 
ods for solving a system of nonlinear equations, g(x) = 0, an orthogonal factorization 
of the approximate Jacobian of g(x), B, be used; i.e. 

(6.1) B =LQ . 

The factors L and Q are then recurred rather than B or B-'. Gill and Murray [16] 
give one method for doing this. Typically the modification formula for B has the form 
B+ = B + vu' which by (6.1) can be written as L+Q+ = L(I + zw')Q'. 

Clearly, the methods of Section 3 can be used to compute the orthogonal factor- 
ization I + zw' = LQ'. Hence, L+ = LL and Q+ = QQ. Because of the special form 

of L and Q - Q is the product of a lower and and an upper Hessenberg matrix of the 

special type shown in (3.3)-the modification of L and Q can be done efficiently. For 

example, if B = LQ', Broyden's first method [4] can be expressed as 

B+ = L ( + z 
W ) w'Q' 

where w, p, and z are defined by Lw =-g, p = Qw, L=yg+ g, and x+= x 
+ tp. 

If Q is stored in product form and some of the ideas of Sections 2 and 3 are 

used, it can be shown that one full step of a factorized version of Broyden's method re- 

quires approximately 7/2n2 + 0(n) operations and n or 2n - 1 square roots, depend- 
ing on which method of Section 2 is used. This is only slightly more computation than 
the standard method requires. 

(7) In many applications the Hessian matrix G(x) is sparse. Since G 1 may be 
full even if G is sparse, one must work with an approximation B to G rather than an 

approximation H to G- 1 to take advantage of this sparsity. Sparsity in B can often be 
translated into sparsity in L. Therefore, the methods of this paper may be of some use 
in algorithms specifically designed to preserve sparsity. 

(8) The methods presented here for updating the factorization L 1DLf1 can also be 

applied to VM methods for linearly constrained optimization problems. Several ways of 
doing this are described in [21]. 
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